考虑非绝热效应的公许短路电流计算

IEC 949（1988）

引言

电缆中任一载流部分，其额定短路电流的计算方法，通常假设在短路持续期间，热量保持在载流体内部（即绝热受热）。实际上在短路时，一些热皇会传入邻近的材料中去，这就有利于对短路电流的计算。在计算短路电流时，为使不同的设计者得到相同的额定短路电流值，本标准给出一个包括非绝热热效应在内的简单计算方法。当然知道可采用复杂的计算技法，其对计算精确度并无明显影响，这可对标准化就太繁复了。

公式中包含许多随电缆中使用的材料而变化的量，其数值已在表中列出。这些数值既有国际标准化的，例如电阻率，电阻温度系数，也有在实际应用中被普遍接受的，如比热。

为了能取得一致和可对比的结果，额定短路电流的计算应使用本标准提出的方法和数值。当然，常识可知，材料常数的另一些数值也许比当前采用的数值更合适，如采用不同的数值时，则相应的额定短路电流应另行宣布。

本标准已假定了最恶劣的计算条件，当然额定短路电流的计算结果是偏安全的。
在短路持续全过程，非绝热法是有效的。与绝热法相比，采用非绝热法计算，屏蔽层，护层和小于 $10 \mathrm{~mm}^{2}$ 的导体（特别是用作屏蔽线），其公许短路电流有很大的增加。对通常规格的电力电缆导体， 5% 对短路电流只是极少增加，当然可能也有其实用意义。为此，短路持续时间与导体截面比 $<0.1 \mathrm{~s} / \mathrm{mm}^{2}$ 时，短路电流的增加可以忽略，即可采用绝热法。这点包括了很多实际请况。

本标准设定的计算歩骤为：
a）计算绝热的短路电流；
b）考虑非絶热热效应，计算修正系数；
c）将 a）和 b）相乘，得到公许短路电流。

1 符号

A——考虑到四周或邻近材料的热性能常数，$\left(\mathrm{mm}^{2} / \mathrm{s}\right) ~ 1 / 2$
B ——考虑到四周或邻近材料的热性能常数，（ $\mathrm{mm}^{2} / \mathrm{s}$ ）
C_{1} ——导体和间隔铜丝屏蔽采用非绝热公式计算的常数， mm / m
C_{2} ——导体和间隔铜丝屏蔽采用非绝热公式计算的常数， $\mathrm{K} \cdot \mathrm{m} \cdot \mathrm{mm}^{2} / \mathrm{J}$
D_{H} ——与皱纹护套内 面相切的假设同心圆柱体直径， mm
D_{oc} ——与皱纹护套内凸面相切的假设同心圆柱体直径， mm
F——考虑不完善的热接触因素
I——公许短路电流（整个短路期间有效值），A
I_{AD} ——在绝热基础上计算的短路电流（整个短路期间有效值）， A
$\mathrm{I}_{\text {scs }} — — 已$ 知最大短路电流（整个短路期间有效值）， A
K ——取决于载流体材料的常数， $\mathrm{As}^{1 / 2} / \mathrm{mm}^{2}$
M ——热接触因素， $\mathrm{S}^{-1 / 2}$
S ——载流体几何截面， mm^{2}
X ——导体和分隔单线屏蔽的简化公式中使用的常数，$\left(\mathrm{mm}^{2} / \mathrm{S}\right)^{1 / 2}$
Y ——导体和分隔单线屏蔽的简化公式中使用的常数， $\mathrm{mm}^{2} / \mathrm{S}$
d ——护层，屏蔽层或铠装层平均直径，mm
n ——包带层数或单线根数
t ——短路持续时间， s
ω ——带宽，mm
β ——在 $0^{\circ} \mathrm{C}$ 时电阻温度系数的倒数， K
δ ——护层，屏蔽层或销装层厚度， mm
ε ——考虑热量损失在邻近层的因素
$\theta_{\text {f }}$ —最终温度，${ }^{\circ} \mathrm{C}$
${ }^{1}{ }_{1}$ ——起始温度，${ }^{\circ} \mathrm{C}$
ρ_{1} ——周围或邻近非金属材料热阻， $\mathrm{K} \cdot \mathrm{m} / \mathrm{W}$
ρ_{2}, ρ_{3} ——在护层，屏蔽层或铠装层四周媒体质热阻， $\mathrm{K} \cdot \mathrm{m} / \mathrm{W}$
$\rho_{20}-20^{\circ}$ C时载流体电阻，$\Omega \cdot \mathrm{m}$
$\sigma_{c}--20^{\circ} \mathrm{C}$ 时载流体比热， $\mathrm{J} / \mathrm{K} \cdot \mathrm{m}^{3}$
σ_{i} ——周围或邻近非金属材料比热， $\mathrm{J} / \mathrm{K} \cdot \mathrm{m}^{3}$
σ_{1} ——屏蔽层，护层或铠装层比热， $\mathrm{J} / \mathrm{K} \cdot \mathrm{m}^{3}$
σ_{2}, σ_{3} ——屏蔽层，护层或铠装层四周媒体质比热， $\mathrm{J} / \mathrm{K} \cdot \mathrm{m}^{3}$

2 公许短路电流

公许短路电流公式如下：

$$
I=E \times I_{A D}
$$

式中 I——公许短路电流
I_{AD} ——在绝热基础上计算的短路电流
ε ——考虑热量损失在邻近层的因素（见第 5 和第 6 条）。绝热计算时 $\varepsilon=1$

3 纯热矩路电流计算

在任何起始温度条件下，绝热的温升计算通式如下：

$$
I_{A D^{t}}^{2}=K^{2} S^{2} \ln \left(\frac{\theta_{f}+\beta}{\theta_{i}+\beta}\right)
$$

式中 I_{AD} ——在绝热基础上计算的短路电流（整个短路期间有效值） A t ——短路持续时间， s
K ——取决于载流体材料的常数， $\mathrm{A} \mathrm{S}^{1 / 2} / \mathrm{mm}^{2}$ 。见表1

$$
K=\sqrt{\frac{\sigma_{c}(\beta+20) \times 10^{-12}}{\rho_{20}}}
$$

S ——载流体几何截面，mm2。对 IEC 228 所规定的导体，采用其标称截面就已满足
$\theta_{\text {f }}$ —最终温度，${ }^{\circ} \mathrm{C}$
θ_{i} ——起始温度，${ }^{\circ} \mathrm{C}$
$\beta — — 0^{\circ} \mathrm{C}$ 时载流体电阻温度系数的倒数，K。见表 1
In－－ $\log _{\text {e }}$
$\sigma_{c}--20^{\circ}$ C时载流体比热，见表 1
$\rho_{20}--20^{\circ}$ C时载流体电阻，$\Omega \cdot \mathrm{m}$ 见表 1

表 1

材料	$\begin{gathered} 1) \\ k\left(A s^{\frac{1}{2}} / \mathrm{mm}^{2}\right) \end{gathered}$	$\begin{gathered} \hline 2) \\ \beta(K) \end{gathered}$	$\begin{gathered} 3) \\ \sigma_{c}\left(J / K \cdot m^{3}\right) \end{gathered}$	$\begin{gathered} \hline 2) \\ \rho_{20}(\Omega \cdot m) \end{gathered}$
a）导体：笥	226	234.5	3.45×10^{6}	1.7241×10^{-8}
铝	143	228	2.5×10^{6}	2.8264×10^{-8}
b）护层，屏菏和铠装层：				
铅或铅合金	41	230	1.45×10^{6}	21.4×10^{-8}
钢	78	202	3.8×10^{6}	13.8×10^{-8}
青歌	180	313	3.4×10^{6}	3.5×10^{-8}
锡	148	228	2.5×10^{6}	2.84×10^{-8}

注：1）数值从第 3 条公式中得到。
2）数值摘自 IEC 287 （表1）。
3）数值摘自 Electra No． 24 October 1972，p． 91.

4 矩路温度计算

有些情况下（即阻抗接地系统），最大故障电流是知道的，导体的最终短路温度可由下式决定：

$$
\begin{aligned}
& I_{A D}=I_{S C} / E \\
& \theta_{f}=\left(\theta_{i}+\beta\right) \exp \left[\frac{I_{A D}^{2} t}{K^{2} S^{2}}\right]-\beta
\end{aligned}
$$

式中 I_{sc} ——已知短路电流（整个短路期间有效值）

5 导体和分隔单线屏蔽非绝热因素的计算

5． 1 概述
非绝热因素的经验等式的一般形式如下：

$$
\varepsilon=\sqrt{1+F A \sqrt{\frac{t}{S}}+F^{2} B\left(\frac{t}{S}\right)}
$$

式中 F ——在导体或单线和四周或邻近非金属材料之间，考虑热性不完善接触因素，推荐取 0.7 （充油电缆取 1.0 ）
A, B ——以四周或邻近非金属材料热性为基础的经验常数

$$
\begin{aligned}
& A=\frac{C_{1}}{\sigma_{c}} \sqrt{\frac{\sigma_{1}}{\rho_{1}}}\left(\mathrm{~mm}^{2} / \mathrm{S}\right)^{1 / 2} \\
& B=\frac{\text { 此处 }}{\sigma_{c}} \cdot\left(\frac{\sigma_{1}}{\sigma_{1}}\right)\left(\mathrm{mm}^{2} / \mathrm{S}\right) \\
&
\end{aligned}
$$

σ_{c} ——载流体比热， $\mathrm{J} / \mathrm{NK} \cdot \mathrm{m}^{3}$
σ_{1} ——四周或邻近非金属材料比热， $\mathrm{J} / \mathrm{NK} \cdot \mathrm{m}^{3}$
ρ_{1} ——四周或邻近非金属材料热阻， $\mathrm{K} \cdot \mathrm{m} / \mathrm{W}$
（这些材料常数的推荐值见表2）

表 2 材料热性常数

材 料	$\begin{gathered} \hline \text { 热阻 } \rho^{1)} \\ (K \cdot m / W) \end{gathered}$	$\begin{gathered} \left.\hline \text { 比热 } \sigma^{2}\right) \\ \left(\mathrm{J} / \mathrm{K} \cdot \mathrm{~m}^{\mathrm{J}}\right) \end{gathered}$
绝缘材料：		
粘性电就用油纸	6.0	2.0×10^{6}
充油电线用 渍纸	5.0	2.0×10^{6}
油	7.0	1.7×10^{6}
聚乙媂	3.5	2.4×10^{6}
交联聚乙烯	3.5	2.4×10^{6}
聚氯乙渧 3 kV 及以下电缯	5.0	1.7×10^{6}
3 kV 及以上电绕	6.0	1.7×10^{6}
乙丙摽胶 3 kV 及以下电趾	3.5	2.0×10^{6}
3 kV 及以上电绕	5.0	2.0×10^{6}
丁基橡胶	5.0	2.0×10^{6}
天然橡胶	5.0	2.0×10^{6}
防护层：		
床混合物和纤维材料	6.0	2.0×10^{6}
夹层橡皮保护层	6.0	2.0×10^{6}
氯丁橡胶	5.5	2.0×10^{6}
聚氯乙渧 3 kV 及以下电䚇	5.0	1.7×10^{6}
3 kV 及以上电趾	6.0	1.7×10^{6}
聚氯乙烯成余于皱纹铝套的沥青	6.0	1.7×10^{6}
聚乙烗	3.5	2.4×10^{6}
其它材料混合物：		
半导电交联聚乙渧和聚乙浐 コ	2.5	2.4×10^{6}
半导电乙丙橡胶	3.5	2.1×10^{6}

注：1）数值摘自 IEC 287 （表4）
2）数值摘自 Electra No． 24 Oct．1972，p． 91 ．
3）数值摘自 EPRI Report No．EL－3014．

5.2 导体（实心或绞线）

对通用结构可简化成如下通式：

$$
s=\sqrt{1+X \sqrt{\frac{t}{S}}+Y\left(\frac{t}{S}\right)}
$$

式中，终合考虑热接触因素为 0.7 （充油电缆为 1.0 ）X和 Y 列于表 3 中。
表 3 导体和分富单线屏薄简化公式计算用常数
（热接触因索 $=0.7$ ，充油电线则罙用 1.0 ）

绝 緣	铝导体用常数		铝导体用常数	
	$\mathrm{X}\left[\left(\mathrm{mm}^{2} / \mathrm{s}\right)^{\prime \prime}\right]$	$\mathrm{Y}\left(\mathrm{mm}^{2} \mathrm{ls}\right)$	$\mathrm{X}\left[\left(\mathrm{mm}^{2} / \mathrm{s}\right)^{\prime \prime}\right]$	$Y\left(\mathrm{~mm}^{2} \mathrm{~s}\right)$
聚氯已桸：	0.29	0.06	0.40	0.08
＞3kV	0.27	0.05	0.37	0.07
交联聚乙媂	0.41	0.12	0.57	0.16
乙丙䀳胶：$\leqslant 3 \mathrm{kV}$	0.38	0.10	0.52	0.14
＞ 3 kV	0.32	0.07	0.44	0.10
纯绝缘：充油	0.45	0.14	0.62	0.20
H它	0.29	0.06	0.40	0.08

5.3 分隔屏蔽单线

5．3．1 全嵌入式

分割屏蔽单线采用的公式中考虑单线分开至少相隔一根单线直径，并全部崁入非金属材料中，且忽略薄的螺旋绕包等宽铜带的影响。对通常的产品结构可用第 5.2 条中简化公式，其它结构形式必须采用第 5.1 条中公式并取 $F=0.7$ 。电流按每根单线计算，乘以单线根数 n 可得到总的短路电流。因此在所有的公式中均使用单线截面。

5．3．2 非全嵌入式

此法用于分割屏蔽单线，它们置于管状挤出物之下，且单线间存在着空隙，忽略薄的螺旋绕包等宽铜带的影响。可采用第 5.1 条中通式，取 $F=0.5$ 。由于单线处于两种不同材料之间，应采用两种材料的热阻和比热的算术平均值计算。电流按每根单线计算，并乘以单线根数可得到总的短路电流值。因此在所有的公式中均使用单线截面。

6 护层，屏蔽层和多根单线非绝热因素计算

注 ：在绝热公式中使用的护层或屏菏层的选择是很重要的，相应地包括在下列有关条文中。

6.1 校述

护层，屏蔽层和铠装层的 ε 因素由下面公式决定：

$$
s=1+0.1 \overline{\overline{\bar{\sigma}}} \sqrt{t}-0.069(M \sqrt{t})^{2}+0.043(M \sqrt{t})^{3}
$$

因素M计算如下：

$$
M=\frac{\sqrt{\sigma_{2} / \rho_{2}}+\sqrt{\sigma_{3} / \rho_{3}}}{2 \sigma_{1} \delta \times 10^{-3}} F\left(s^{-1 / 2}\right)
$$

式中 $\quad \sigma_{2}, \sigma_{3}$ ——屏蔽层，护层和铠装层四周媒质比热， $\mathrm{J} / \mathrm{K} \cdot \mathrm{m}^{3}$
ρ_{2}, ρ_{3} ——屏蔽层，护层和铠装层四周媒质热阻， $\mathrm{J} / \mathrm{K} \cdot \mathrm{m} / \mathrm{W}$
σ_{1} ——屏蔽层，护层和铠装层四周煤质比热， $\mathrm{J} / \mathrm{K} \cdot \mathrm{m}^{3}$
δ ——屏蔽层，护层和铠装层厚度，mm
表 2 为各种材料热性能常数的建议值。
除非金属层和其邻近层有一面完全紧粘者可取用 $\mathrm{F}=0.9$ 外，一般推荐值 $\mathrm{F}=0.7$ 。
也可选用另一种方法，一旦 $M \sqrt{t}$ 值计算好后，ε 可从图 1 中得到。

6.2 管形护层

在绝热公式中使用的截面计算如下：

$$
S=\pi d \delta
$$

式中 d——护层平均直径，mm
注：皱纹护层的直径 $d=\left(D_{i t}+D_{o c}\right) / 2$
δ ——护层厚度，mm
此处能预料热性接触是紧密的，热接触因素 F 可看作为均一的。

6.2 包带

6．3．1 织向绕包

假如纵向搭盖不大于带宽的 10% ，在绝热公式中所使用的截面为包带横截面。

$$
S=\omega \delta
$$

式中 ω ——包带宽度， $\mathrm{mm} \quad \delta$ ——包带厚度， mm

6．3．2 皦旅绕包

卷绕包带和包带间的接触不能认为是完善的，特别在运行一段时间后更是如此，为此推荐的电流流动方向假设是沿螺旋方向流动的，为此包带总截面（即 $\mathrm{n} \times$ 宽 \times 厚）可用下式计算：

$$
S=n \omega \delta
$$

式中 n ——包带层数 ω ——包带宽度， $\mathrm{mm} \quad \delta$ ——包带厚度， mm

6.4 相互接触的单线

这些单线的总截面应是在绝热公式中使用的面积。 δ 即为单根单线的直径。

6.5 铜编织带

铜丝编织带截面考虑为编织带中铜丝的总根数乘单根铜丝的截面，δ 为编织铜丝直径的 2倍。

